Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(3): e3002522, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483887

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected approximately 800 million people since the start of the Coronavirus Disease 2019 (COVID-19) pandemic. Because of the high rate of mutagenesis in SARS-CoV-2, it is difficult to develop a sustainable approach for prevention and treatment. The Envelope (E) protein is highly conserved among human coronaviruses. Previous studies reported that SARS-CoV-1 E deficiency reduced viral propagation, suggesting that E inhibition might be an effective therapeutic strategy for SARS-CoV-2. Here, we report inhibitory peptides against SARS-CoV-2 E protein named iPep-SARS2-E. Leveraging E-induced alterations in proton homeostasis and NFAT/AP-1 pathway in mammalian cells, we developed screening platforms to design and optimize the peptides that bind and inhibit E protein. Using Vero-E6 cells, human-induced pluripotent stem cell-derived branching lung organoid and mouse models with SARS-CoV-2, we found that iPep-SARS2-E significantly inhibits virus egress and reduces viral cytotoxicity and propagation in vitro and in vivo. Furthermore, the peptide can be customizable for E protein of other human coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The results indicate that E protein can be a potential therapeutic target for human coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Chlorocebus aethiops , Humans , Cell Line , Vero Cells , Peptides/pharmacology , Mammals
2.
Nat Cardiovasc Res ; 1(2): 142-156, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36051854

ABSTRACT

Some missense gain-of-function mutations in CACNA1C gene, encoding calcium channel CaV1.2, cause a life-threatening form of long QT syndrome named Timothy syndrome, with currently no clinically-effective therapeutics. Here we report that pharmacological targeting of sigma non-opioid intracellular receptor 1 (SIGMAR1) can restore electrophysiological function in iPSC-derived cardiomyocytes generated from patients with Timothy syndrome and two common forms of long QT syndrome, type 1 (LQTS1) and 2 (LQTS2), caused by missense trafficking mutations in potassium channels. Electrophysiological recordings demonstrate that an FDA-approved cough suppressant, dextromethorphan, can be used as an agonist of SIGMAR1, to shorten the prolonged action potential in Timothy syndrome cardiomyocytes and human cellular models of LQTS1 and LQTS2. When tested in vivo, dextromethorphan also normalized the prolonged QT intervals in Timothy syndrome model mice. Overall, our study demonstrates that SIGMAR1 is a potential therapeutic target for Timothy syndrome and possibly other inherited arrhythmias such as LQTS1 and LQTS2.

4.
Nat Biotechnol ; 40(11): 1672-1679, 2022 11.
Article in English | MEDLINE | ID: mdl-35697806

ABSTRACT

Red light penetrates deep into mammalian tissues and has low phototoxicity, but few optogenetic tools that use red light have been developed. Here we present MagRed, a red light-activatable photoswitch that consists of a red light-absorbing bacterial phytochrome incorporating a mammalian endogenous chromophore, biliverdin and a photo-state-specific binder that we developed using Affibody library selection. Red light illumination triggers the binding of the two components of MagRed and the assembly of split-proteins fused to them. Using MagRed, we developed a red light-activatable Cre recombinase, which enables light-activatable DNA recombination deep in mammalian tissues. We also created red light-inducible transcriptional regulators based on CRISPR-Cas9 that enable an up to 378-fold activation (average, 135-fold induction) of multiple endogenous target genes. MagRed will facilitate optogenetic applications deep in mammalian organisms in a variety of biological research areas.


Subject(s)
Light , Optogenetics , Animals , Mammals
5.
Circulation ; 145(16): 1238-1253, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35384713

ABSTRACT

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. METHODS: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. RESULTS: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. CONCLUSIONS: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial , Cardiomyopathy, Hypertrophic , Actomyosin/genetics , Humans , LIM Domain Proteins , Mechanotransduction, Cellular , Muscle Proteins , Mutation , Myocytes, Cardiac
6.
J Physiol ; 599(11): 2851-2868, 2021 06.
Article in English | MEDLINE | ID: mdl-33709461

ABSTRACT

KEY POINTS: We report a novel method for the transient expression of SARS-CoV-2 envelope (E) protein in intracellular organelles and the plasma membrane of mammalian cells and Xenopus oocytes. Intracellular expression of SARS-CoV-2 E protein increases intra-Golgi pH. By targeting the SARS-CoV-2 E protein to the plasma membrane, we show that it forms a cation channel, viroporin, that is modulated by changes of pH. This method for studying the activity of viroporins may facilitate screening for new antiviral drugs to identify novel treatments for COVID-19. ABSTRACT: The envelope (E) protein of coronaviruses such as SARS-CoV-1 is proposed to form an ion channel or viroporin that participates in viral propagation and pathogenesis. Here we developed a technique to study the E protein of SARS-CoV-2 in mammalian cells by directed targeting using a carboxyl-terminal fluorescent protein tag, mKate2. The wild-type SARS-CoV-2 E protein can be trafficked to intracellular organelles, notably the endoplasmic reticulum-Golgi intermediate complex, where its expression increases pH inside the organelle. We also succeeded in targeting SARS-CoV-2 E to the plasma membrane, which enabled biophysical analysis using whole-cell patch clamp recording in a mammalian cell line, HEK 293 cells, and two-electrode voltage clamp electrophysiology in Xenopus oocytes. The results suggest that the E protein forms an ion channel that is permeable to monovalent cations such as Na+ , Cs+ and K+ . The E current is nearly time- and voltage-independent when E protein is expressed in mammalian cells, and is modulated by changes of pH. At pH 6.0 and 7.4, the E protein current is activated, whereas at pH 8.0 and 9.0, the amplitude of E protein current is reduced, and in oocytes the inward E current fades at pH 9 in a time- and voltage-dependent manner. Using this directed targeting method and electrophysiological recordings, potential inhibitors of the E protein can be screened and subsequently investigated for antiviral activity against SARS-CoV-2 in vitro and possible efficacy in treating COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cations , HEK293 Cells , Humans , Hydrogen-Ion Concentration
8.
Cell Rep Methods ; 1(7): 100092, 2021 11 22.
Article in English | MEDLINE | ID: mdl-35475001

ABSTRACT

Lactate metabolism has been shown to have increasingly important implications in cellular functions as well as in the development and pathophysiology of disease. The various roles as a signaling molecule and metabolite have led to interest in establishing a new method to detect lactate changes in live cells. Here we report our development of a genetically encoded metabolic indicator specifically for probing lactate (GEM-IL) based on superfolder fluorescent proteins and mutagenesis. With improvements in its design, specificity, and sensitivity, GEM-IL allows new applications compared with the previous lactate indicators, Laconic and Green Lindoblum. We demonstrate the functionality of GEM-IL to detect differences in lactate changes in human oncogenic neural progenitor cells and mouse primary ventricular myocytes. The development and application of GEM-IL show promise for enhancing our understanding of lactate dynamics and roles.


Subject(s)
Lactic Acid , Neural Stem Cells , Humans , Animals , Mice , Lactic Acid/metabolism , Neural Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction
9.
Nat Med ; 26(12): 1888-1898, 2020 12.
Article in English | MEDLINE | ID: mdl-32989314

ABSTRACT

22q11.2 deletion syndrome (22q11DS) is a highly penetrant and common genetic cause of neuropsychiatric disease. Here we generated induced pluripotent stem cells from 15 individuals with 22q11DS and 15 control individuals and differentiated them into three-dimensional (3D) cerebral cortical organoids. Transcriptional profiling across 100 days showed high reliability of differentiation and revealed changes in neuronal excitability-related genes. Using electrophysiology and live imaging, we identified defects in spontaneous neuronal activity and calcium signaling in both organoid- and 2D-derived cortical neurons. The calcium deficit was related to resting membrane potential changes that led to abnormal inactivation of voltage-gated calcium channels. Heterozygous loss of DGCR8 recapitulated the excitability and calcium phenotypes and its overexpression rescued these defects. Moreover, the 22q11DS calcium abnormality could also be restored by application of antipsychotics. Taken together, our study illustrates how stem cell derived models can be used to uncover and rescue cellular phenotypes associated with genetic forms of neuropsychiatric disease.


Subject(s)
Calcium Signaling/genetics , Cerebral Cortex/ultrastructure , DiGeorge Syndrome/diagnosis , Neurons/ultrastructure , Adult , Cell Differentiation/genetics , Cerebral Cortex/pathology , DiGeorge Syndrome/pathology , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/ultrastructure , Male , Neurons/pathology , Organoids/pathology , Organoids/ultrastructure , Young Adult
10.
Nat Commun ; 11(1): 3452, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651381

ABSTRACT

The advent of image-activated cell sorting and imaging-based cell picking has advanced our knowledge and exploitation of biological systems in the last decade. Unfortunately, they generally rely on fluorescent labeling for cellular phenotyping, an indirect measure of the molecular landscape in the cell, which has critical limitations. Here we demonstrate Raman image-activated cell sorting by directly probing chemically specific intracellular molecular vibrations via ultrafast multicolor stimulated Raman scattering (SRS) microscopy for cellular phenotyping. Specifically, the technology enables real-time SRS-image-based sorting of single live cells with a throughput of up to ~100 events per second without the need for fluorescent labeling. To show the broad utility of the technology, we show its applicability to diverse cell types and sizes. The technology is highly versatile and holds promise for numerous applications that are previously difficult or undesirable with fluorescence-based technologies.


Subject(s)
Cell Separation/methods , Spectrum Analysis, Raman/methods , Animals , Humans
11.
Mol Cell Neurosci ; 107: 103529, 2020 09.
Article in English | MEDLINE | ID: mdl-32629111

ABSTRACT

L-type voltage-gated calcium channels play an essential role in various physiological systems including neuronal excitation and any mutation or dysfunction in the channel has significant impact on human brain function resulting in psychiatric diseases. Particular gain-of-function mutations in CACNA1C encoding CaV1.2 have been associated with Timothy Syndrome, a devastating disease with a multi-organ phenotype. Efforts to understand the underlying pathophysiology and find therapeutic strategy have been spurred recently with the advances in stem cell technology, in particular those arising from patient-derived sources. In this review, we report on the recent advances in Timothy Syndrome research and on the methods used to study this disease.


Subject(s)
Autistic Disorder/metabolism , Calcium Channels, L-Type/metabolism , Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome/metabolism , Syndactyly/metabolism , Animals , Autistic Disorder/genetics , Calcium Channels, L-Type/genetics , Humans , Long QT Syndrome/genetics , Mutation/genetics , Phenotype , Syndactyly/genetics
12.
PLoS One ; 15(6): e0234913, 2020.
Article in English | MEDLINE | ID: mdl-32574189

ABSTRACT

The transcriptional regulatory machinery in mitochondrial bioenergetics is complex and is still not completely understood. We previously demonstrated that the histone methyltransferase Smyd1 regulates mitochondrial energetics. Here, we identified Perm1 (PPARGC-1 and ESRR-induced regulator, muscle specific 1) as a downstream target of Smyd1 through RNA-seq. Chromatin immunoprecipitation assay showed that Smyd1 directly interacts with the promoter of Perm1 in the mouse heart, and this interaction was significantly reduced in mouse hearts failing due to pressure overload for 4 weeks, where Perm1 was downregulated (24.4 ± 5.9% of sham, p<0.05). Similarly, the Perm1 protein level was significantly decreased in patients with advanced heart failure (55.2 ± 13.1% of donors, p<0.05). Phenylephrine (PE)-induced hypertrophic stress in cardiomyocytes also led to downregulation of Perm1 (55.7 ± 5.7% of control, p<0.05), and adenovirus-mediated overexpression of Perm1 rescued PE-induced downregulation of estrogen-related receptor alpha (ERRα), a key transcriptional regulator of mitochondrial energetics, and its target gene, Ndufv1 (Complex I). Pathway enrichment analysis of cardiomyocytes in which Perm1 was knocked-down by siRNA (siPerm1), revealed that the most downregulated pathway was metabolism. Cell stress tests using the Seahorse XF analyzer showed that basal respiration and ATP production were significantly reduced in siPerm1 cardiomyocytes (40.7% and 23.6% of scrambled-siRNA, respectively, both p<0.05). Luciferase reporter gene assay further revealed that Perm1 dose-dependently increased the promoter activity of the ERRα gene and known target of ERRα, Ndufv1 (Complex I). Overall, our study demonstrates that Perm1 is an essential regulator of cardiac energetics through ERRα, as part of the Smyd1 regulatory network.


Subject(s)
DNA-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Transcription Factors/metabolism , Adult , Aged , Animals , DNA Methylation , Disease Models, Animal , Down-Regulation , Electron Transport Complex I/genetics , Energy Metabolism/genetics , Female , Gene Expression Regulation , Gene Knockdown Techniques , Heart Failure/pathology , Heart Failure/surgery , Heart Transplantation , Histones/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Muscle Proteins/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , Phenylephrine/pharmacology , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA, Small Interfering/metabolism , RNA-Seq , Rats , Receptors, Estrogen/genetics , ERRalpha Estrogen-Related Receptor
13.
Nat Commun ; 11(1): 2141, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32358538

ABSTRACT

Optogenetic genome engineering tools enable spatiotemporal control of gene expression and provide new insight into biological function. Here, we report the new version of genetically encoded photoactivatable (PA) Cre recombinase, PA-Cre 3.0. To improve PA-Cre technology, we compare light-dimerization tools and optimize for mammalian expression using a CAG promoter, Magnets, and 2A self-cleaving peptide. To prevent background recombination caused by the high sequence similarity in the dimerization domains, we modify the codons for mouse gene targeting and viral production. Overall, these modifications significantly reduce dark leak activity and improve blue-light induction developing our new version, PA-Cre 3.0. As a resource, we have generated and validated AAV-PA-Cre 3.0 as well as two mouse lines that can conditionally express PA-Cre 3.0. Together these new tools will facilitate further biological and biomedical research.


Subject(s)
Integrases/metabolism , Recombination, Genetic/genetics , Animals , Codon/genetics , Genetic Engineering/methods , Integrases/genetics , Light , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/radiation effects , Recombination, Genetic/radiation effects
14.
Biophys J ; 117(7): 1352-1363, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31521331

ABSTRACT

Nav1.5 inactivation is necessary for healthy conduction of the cardiac action potential. Genetic mutations of Nav1.5 perturb inactivation and cause potentially fatal arrhythmias associated with long QT syndrome type 3. The exact structural dynamics of the inactivation complex is unknown. To sense inactivation gate conformational change in live mammalian cells, we incorporated the solvatochromic fluorescent noncanonical amino acid 3-((6-acetylnaphthalen-2-yl)amino)-2-aminopropanoic acid (ANAP) into single sites in the Nav1.5 inactivation gate. ANAP was incorporated in full-length and C-terminally truncated Nav1.5 channels using mammalian cell synthetase-tRNA technology. ANAP-incorporated channels were expressed in mammalian cells, and they exhibited pathophysiological function. A spectral imaging potassium depolarization assay was designed to detect ANAP emission shifts associated with Nav1.5 conformational change. Site-specific intracellular ANAP incorporation affords live-cell imaging and detection of Nav1.5 inactivation gate conformational change in mammalian cells.


Subject(s)
Amino Acids/metabolism , Mammals/metabolism , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Amino Acids/chemistry , Animals , Fluorescence , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Ion Channel Gating , Protein Conformation
15.
Nat Protoc ; 14(10): 2781-2817, 2019 10.
Article in English | MEDLINE | ID: mdl-31492957

ABSTRACT

The application of tissue-engineering approaches to human induced pluripotent stem (hiPS) cells enables the development of physiologically relevant human tissue models for in vitro studies of development, regeneration, and disease. However, the immature phenotype of hiPS-derived cardiomyocytes (hiPS-CMs) limits their utility. We have developed a protocol to generate engineered cardiac tissues from hiPS cells and electromechanically mature them toward an adult-like phenotype. This protocol also provides optimized methods for analyzing these tissues' functionality, ultrastructure, and cellular properties. The approach relies on biological adaptation of cultured tissues subjected to biomimetic cues, applied at an increasing intensity, to drive accelerated maturation. hiPS cells are differentiated into cardiomyocytes and used immediately after the first contractions are observed, when they still have developmental plasticity. This starting cell population is combined with human dermal fibroblasts, encapsulated in a fibrin hydrogel and allowed to compact under passive tension in a custom-designed bioreactor. After 7 d of tissue formation, the engineered tissues are matured for an additional 21 d by increasingly intense electromechanical stimulation. Tissue properties can be evaluated by measuring contractile function, responsiveness to electrical stimuli, ultrastructure properties (sarcomere length, mitochondrial density, networks of transverse tubules), force-frequency and force-length relationships, calcium handling, and responses to ß-adrenergic agonists. Cell properties can be evaluated by monitoring gene/protein expression, oxidative metabolism, and electrophysiology. The protocol takes 4 weeks and requires experience in advanced cell culture and machining methods for bioreactor fabrication. We anticipate that this protocol will improve modeling of cardiac diseases and testing of drugs.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocardium , Tissue Engineering/methods , Cell Culture Techniques/methods , Cell Differentiation , Heart/physiology , Humans , Myocardium/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology
16.
Nature ; 572(7769): E16-E17, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31363231

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Cell Stem Cell ; 25(2): 225-240.e7, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31178255

ABSTRACT

The specific cellular physiology of hematopoietic stem cells (HSCs) is underexplored, and their maintenance in vitro remains challenging. We discovered that culture of HSCs in low calcium increased their maintenance as determined by phenotype, function, and single-cell expression signature. HSCs are endowed with low intracellular calcium conveyed by elevated activity of glycolysis-fueled plasma membrane calcium efflux pumps and a low-bone-marrow interstitial fluid calcium concentration. Low-calcium conditions inhibited calpain proteases, which target ten-eleven translocated (TET) enzymes, of which TET2 was required for the effect of low calcium conditions on HSC maintenance in vitro. These observations reveal a physiological feature of HSCs that can be harnessed to improve their maintenance in vitro.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , DNA-Binding Proteins/metabolism , Hematopoietic Stem Cells/physiology , Proto-Oncogene Proteins/metabolism , Animals , Calpain/metabolism , Cell Self Renewal , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats , Dioxygenases , Glycolysis , Hematopoiesis , Homeostasis , Humans , Male , Mice , Mice, Inbred C57BL , Single-Cell Analysis , Transcriptome
18.
Cell ; 175(1): 266-276.e13, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30166209

ABSTRACT

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.


Subject(s)
Flow Cytometry/methods , High-Throughput Screening Assays/methods , Image Processing, Computer-Assisted/methods , Animals , Deep Learning , Humans
19.
Nature ; 556(7700): 239-243, 2018 04.
Article in English | MEDLINE | ID: mdl-29618819

ABSTRACT

Cardiac tissues generated from human induced pluripotent stem cells (iPSCs) can serve as platforms for patient-specific studies of physiology and disease1-6. However, the predictive power of these models is presently limited by the immature state of the cells1, 2, 5, 6. Here we show that this fundamental limitation can be overcome if cardiac tissues are formed from early-stage iPSC-derived cardiomyocytes soon after the initiation of spontaneous contractions and are subjected to physical conditioning with increasing intensity over time. After only four weeks of culture, for all iPSC lines studied, such tissues displayed adult-like gene expression profiles, remarkably organized ultrastructure, physiological sarcomere length (2.2 µm) and density of mitochondria (30%), the presence of transverse tubules, oxidative metabolism, a positive force-frequency relationship and functional calcium handling. Electromechanical properties developed more slowly and did not achieve the stage of maturity seen in adult human myocardium. Tissue maturity was necessary for achieving physiological responses to isoproterenol and recapitulating pathological hypertrophy, supporting the utility of this tissue model for studies of cardiac development and disease.


Subject(s)
Cell Differentiation , Heart/growth & development , Induced Pluripotent Stem Cells/cytology , Myocardium/cytology , Myocytes, Cardiac/cytology , Tissue Culture Techniques , Adult , Calcium/metabolism , Cell Differentiation/genetics , Energy Metabolism/drug effects , Heart/drug effects , Humans , Isoproterenol/pharmacology , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Sarcomeres/metabolism , Transcriptome
20.
ACS Synth Biol ; 7(1): 2-9, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29172503

ABSTRACT

The organelle interface emerges as a dynamic platform for a variety of biological responses. However, their study has been limited by the lack of tools to manipulate their occurrence in live cells spatiotemporally. Here, we report the development of a genetically encoded light-inducible tethering (LIT) system allowing the induction of contacts between endoplasmic reticulum (ER) and mitochondria, taking advantage of a pair of light-dependent heterodimerization called an iLID system. We demonstrate that the iLID-based LIT approach enables control of ER-mitochondria tethering with high spatiotemporal precision in various cell types including primary neurons, which will facilitate the functional study of ER-mitochondrial contacts.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Animals , Dimerization , Endoplasmic Reticulum/ultrastructure , HEK293 Cells , Humans , Light , Mice , Microscopy, Electron , Microscopy, Fluorescence , Mitochondria/genetics , Mitochondria/radiation effects , NIH 3T3 Cells , Optogenetics
SELECTION OF CITATIONS
SEARCH DETAIL
...